INTERVAL VALUED C-PRIME FUZZY BI-**IDEALS OFΓ-NEAR-RINGS**

¹N.Priyanka, ²N.Meenakumari

¹M.Phil Scholar, A.P.C. Mahalaxmi College for Women, Thoothukudi, Tamil Nadu, India. e-mail Id: banupriyanka110@gmail.com ²PG and Research Department of Mathematics, A.P.C. Mahalaxmi College for Women, Thoothukudi, Tamil Nadu, India. e-mail Id: meenakumari.n123@gmail.com

ABSTRACT:

A fuzzy set in a set M is a function μ : M \rightarrow [0,1]. A fuzzy set in M is called a fuzzy bi-ideal of M if (i) $\mu(x-y) \ge \min\{\mu(x), \mu(y)\}\ \text{for all } x,y \in M. \ \ (ii) \ \mu\left(x\alpha y\beta z\right) \ge \min\left\{\mu(x), \mu(z)\right\}\ \text{for all } x,y,z \in M \ \text{and} \ \alpha,\beta \in \Gamma.$ A fuzzy bi-ideal μ of M is called c-prime if for all $x, y \in M, \gamma \in \Gamma$, $\mu(x\gamma y) \leq \max\{\mu(x), \mu(y)\}$. An interval valued fuzzy subset $\tilde{\mu}$ of M is called an interval valued fuzzy bi-ideal of M if (i) $\tilde{\mu}(x-y) \ge min^i\{\tilde{\mu}(x), \tilde{\mu}(y)\}$ for all $x, y \in M$. (ii) $\tilde{\mu}(x\alpha y\beta z) \ge min^i \{\tilde{\mu}(x), \tilde{\mu}(z)\}$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. In this paper, we introduce interval valued c-prime fuzzy bi-ideals in Γ -near-rings and obtain some of their properties.

KEYWORDS:

Γ-near-rings, bi-ideal, c-prime fuzzy bi-ideal, interval valued c-prime fuzzy bi-ideal.

1. Introduction

Zadeh introduced the concept of fuzzy sets in 1965 [15] and also generalized it to interval valued fuzzy subsets [16]. Gamma-near-ring was introduced by Satyanarayana [9] in 1984. The concept of biideals of gamma-near-rings was applied to gammanear-rings Tamizhchelvam al. by et [10]. Meenakumari [6] introduced C-Prime fuzzy bi-ideals in gamma-near-rings and discussed some of its properties. V. Chinnadurai [4] introduced interval valued fuzzy ideals of gamma-near-rings and also developed interval valued fuzzy weak bi-ideals of gamma-near-rings [3].

In this paper, we define a new notion called interval valued c-prime fuzzy bi-ideals in gammanear-rings. We also investigate some of its properties and illustrate with examples.

2. Preliminaries

Definition 2.1 [8]

A *near-ring* is an algebraic system (R, +, .)consisting of a non empty set R together with two binary operations called + and . such that (R, +) is a group not necessarily abelian and (R, .) is a semigroup connected by the following distributive law : $(x + z) \cdot y = x \cdot y + z \cdot y$ valid for all $x, y, z \in$ R. We use the word 'near-ring' to mean 'right nearring'. We denote xy instead of $x \cdot y$.

Definition 2.2 [9]

A Γ -near-ring is a triple $(M, +, \Gamma)$ where

- (i) (M, +) is a group.
- (ii) Γ is a nonempty set of binary operators on M such that for each $\alpha \in \Gamma$, $(M, +, \alpha)$ is a near-ring,

(iii) $x\alpha(y\beta z) = (x\alpha y)\beta z$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.

Definition 2.3 [7]

A Γ -near-ring M is said to be *zero-symmetric* if $x\alpha 0 = 0$ for all $x \in M$ and $\alpha \in \Gamma$.

Throughout this paper, M denotes a zero-symmetric right Γ -near-ring with at least two elements.

Definition 2.4 [9]

A subset A of a Γ -near-ring M called a *left* (resp. right) ideal of M if

(i) (A, +) is a normal subgroup of (M, +) (i.e.) $x - y \in A$ for all $x, y \in A$ and

$$y + x - y \in A \text{ for } x \in A, y \in M.$$

(ii)
$$u \alpha(x + v) - u\alpha v \in A \text{ (resp. } x\alpha u \in A)$$

for all $x \in A$, $\alpha \in \Gamma$ and $u, v \in M$.

Definition 2.5 [6]

A fuzzy bi-ideal μ of M is called c-prime if for all $x, y \in M, \gamma \in \Gamma$, $\mu(x\gamma y) \le \max\{\mu(x), \mu(y)\}$.

Definition 2.6 [10]

A subgroup B of (M, +) is called a *bi-ideal* of M if and only if $B\Gamma M\Gamma B \subseteq B$.

Definition 2.7 [1]

A subgroup H of (M, +) is said to be a *weak* bi-ideal of M if $H\Gamma H \Gamma H \subseteq H$.

Definition 2.8 [16]

Let X be any set. A mapping $\tilde{\mu}: X \to D[0,1]$ is called an *interval valued fuzzy subset*

(briefly, an i.v. fuzzy subset) of X where D[0,1] denotes the family of closed subintervals [0,1] and $\tilde{\mu}(x) = [\mu^{-}(x), \mu^{+}(x)]$ for all $x \in X$ where $\mu^{-}(x)$ and $\mu^{+}(x)$ are fuzzy subsets of X such that $\mu^{-}(x) \leq \mu^{+}(x)$ for all $x \in X$.

Definition 2.9 [11]

By an *interval number* \tilde{a} , we mean an interval $[a^-, a^+]$ such that $0 \le a^- \le a^+ \le 1$ and where a^- and a^+ are the lower and upper limits of \tilde{a} respectively. The set of all closed subintervals of [0, 1] is denoted by D[0,1]. We also identify the interval [a,a] by the number $a \in [0,1]$. For any interval numbers $\tilde{a}_j = [a_j^-, a_j^+]$, $\tilde{b}_j = [b_j^-, b_j^+] \in D[0,1]$, $j \in \Omega$ we define $\max^i \{\tilde{a}_j, \tilde{b}_j\} = [\max\{a_j^-, b_j^-\}, \max\{a_j^+, b_j^+\}]$, $\min^i \{\tilde{a}_j, \tilde{b}_j\} = [\min\{a_j^-, b_j^-\}, \max\{a_j^+, b_j^+\}]$, $\inf^i \tilde{a}_j = [\bigcap_{j \in \Omega} a_j^-, \bigcap_{j \in \Omega} a_j^+]$, and let

- (i) $\tilde{a} \le \tilde{b} \iff a^- \le b^- \text{ and } a^+ \le b^+$,
- (ii) $\tilde{a} = \tilde{b} \iff a^- = b^- \text{ and } a^+ = b^+.$
- (iii) $\tilde{a} < \tilde{b} \iff \tilde{a} \leq \tilde{b} \text{ and } \tilde{a} \neq \tilde{b}$,
- (iv) $k\tilde{a} = [ka^-, ka^+]$, whenever $0 \le k \le 1$.

Definition 2.10 [11]

Let $\tilde{\mu}$ be an i.v fuzzy subset of X and $[t_1, t_2] \in D[0, 1]$. Then the set $\widetilde{U}(\tilde{\mu}: [t_1, t_2]) = \{ x \in X | \tilde{\mu}(x) \ge [t_1, t_2] \}$ is called the upper level subset of $\tilde{\mu}$.

Definition 2.11 [1]

An i.v fuzzy subset $\tilde{\mu}$ in a Γ -near-ring M is called an i.v fuzzy left (resp. right) ideal if

- (i) $\tilde{\mu}$ is an i.v fuzzy normal divisor with respect to the addition,
- (ii) $\tilde{\mu}(u\alpha(x+v)-u\alpha v) \geq \tilde{\mu}(x)$, (resp. $\tilde{\mu}(x\alpha u) \geq \tilde{\mu}(x)$) for all $x,u,v \in M$ and $\alpha \in \Gamma$.

The condition (i) of definition 2.11 means that $\tilde{\mu}$ satisfies:

- (i) $\tilde{\mu}(x-y) \ge \min^i \{ \tilde{\mu}(x), \tilde{\mu}(y) \},$
- (ii) $\tilde{\mu}(y + x y) \ge \tilde{\mu}(x)$, for all $x, y \in M$

Note that $\tilde{\mu}$ is an i.v fuzzy left (resp. right) ideal of Γ near-ring M, then $\tilde{\mu}(0) \geq \tilde{\mu}(x)$ for all $x \in M$, where 0 is the zero element of M.

Definition 2.12 [2]

An i.v fuzzy subset $\tilde{\mu}$ of M is called an i.v fuzzy bi-ideal of M if

- (i) $\tilde{\mu}(x-y) \ge \min^i \{\tilde{\mu}(x), \tilde{\mu}(y)\}$ for all $x, y \in M$.
- (ii) $\tilde{\mu}(x\alpha y\beta z) \ge min^i\{\tilde{\mu}(x), \tilde{\mu}(z)\}$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.

3. Intervalvalued c-prime fuzzy bi-ideals of Γ –near-rings

In this section, we introduce the notion of i.v.c-prime fuzzy bi-ideal of M and discuss some of its properties.

Definition3.1

An i.v. fuzzy set $\tilde{\mu}$ of M is called an *i.v. c-prime fuzzy bi-ideal* of M, if (i) $\tilde{\mu}(x-y) \geq min^i \{ \tilde{\mu}(x), \tilde{\mu}(y) \}$ for all $x,y \in M$. (ii) $\tilde{\mu}(x\alpha y\beta z) \geq min^i \{ \tilde{\mu}(x), \tilde{\mu}(z) \}$ for all $x,y,z \in M$ and $\alpha,\beta \in \Gamma$. (iii) $\tilde{\mu}(x\gamma y) \leq max^{i}\{\tilde{\mu}(x), \tilde{\mu}(y)\}$ for all $\gamma \in \Gamma$ and $x, y \in M$.

Example 3.2

Let $M = \{0, \alpha, b, c\}$ be a non-empty set with binary operation + and $\Gamma = \{\alpha, \beta\}$ be a non-empty set of binary operations as shown in the following tables

+	0	a	b	c
0	0	a	b	c
a	a	0	С	b
b	b	С	0	a
c	c	b	a	0

α	0	a	b	c
0	0	0	0	0
a	a	a	a	a
b	0	0	b	b
c	0	a	b	c

β	0	a	b	c
0	0	0	0	0
a	0	0	0	0
b	0	a	С	b
С	0	a	b	С

Let $\tilde{\mu}: M \to [0,1]$ be an i.v fuzzy subset defined by $\tilde{\mu}(0) = \tilde{\mu}(a) = [0.6,0.7], \tilde{\mu}(b) = \tilde{\mu}(c) = [0.2,0.3].$ Then $\tilde{\mu}$ is an i.v c-prime fuzzy bi-ideal of M.

Theorem 3.3

Let $\tilde{\mu}$ be an i.v fuzzy subset of M. Then $\tilde{\mu}$ is an i.v c-prime fuzzy bi-ideal of M if and only if $\widetilde{U}(\tilde{\mu}:[t_1,t_2])$ is a c-prime bi-ideal of M for all $[t_1,t_2]\in D[0,1]$.

Proof: Assume that $\tilde{\mu}$ is an i.v c-prime fuzzy bi-ideal of M. Let $[t_1, t_2] \in D[0,1]$ such that $x, y \in \widetilde{U}(\widetilde{\mu})$: $[t_1, t_2]$). Then, $\tilde{\mu}(x - y) = min^i \{\tilde{\mu}(x), \tilde{\mu}(y)\} \ge$ $min^{i}\{[t_{1}, t_{2}], [t_{1}, t_{2}]\} = [t_{1}, t_{2}].$ Thus $x, y \in \widetilde{U}(\widetilde{\mu})$: $[t_1, t_2]$) and $\alpha, \beta \in \Gamma$. We have $\tilde{\mu}(x\alpha y\beta z) =$ $min^{i}\{\tilde{\mu}(x), \; \tilde{\mu}(z)\} \geq min^{i}\{[t_{1}, t_{2}], \; [t_{1}, t_{2}]\} =$ $[t_1, t_2]$. Therefore, $x\alpha y\beta z \in \widetilde{U}(\widetilde{\mu}: [t_1, t_2])$. Let $x, y \in \widetilde{U}(\widetilde{\mu} : [t_1, t_2])$ and $\alpha, \beta \in \Gamma$. Then we have $\tilde{\mu}(x\alpha y) = \max^{i} \{\tilde{\mu}(x), \tilde{\mu}(y)\} \leq \max^{i} \{[t_1, t_2],$ $[t_1, t_2]$ = $[t_1, t_2]$. Therefore $x\alpha y \in \widetilde{U}(\widetilde{\mu} : [t_1, t_2])$ $[t_2]$). Hence $\widetilde{U}(\widetilde{\mu}:[t_1,\ t_2])$ is a c-prime fuzzy biideal of M. Conversely, Assume that $\widetilde{U}(\widetilde{\mu}:[t_1,t_2])$ is a c-prime fuzzy bi-ideal of M for all $[t_1, t_2] \in$ D[0,1]. Let $x, y \in M$. Suppose $\tilde{\mu}(x-y) <$ $min^{i}\{\tilde{\mu}(x), \; \tilde{\mu}(y)\}$. Choose $[0,0] < [t_1, t_2] < [1,1]$ such that $\tilde{\mu}(x-y) < [t_1, t_2] < min^i {\{\tilde{\mu}(x), \tilde{\mu}(y)\}}$. This implies that $\tilde{\mu}(x) > [t_1, t_2]$, $\tilde{\mu}(y) > [t_1, t_2]$ and $\tilde{\mu}(x-y) < [t_1, t_2]$. Then we have $x, y \in \tilde{U}(\tilde{\mu})$: $[t_1, t_2]$) but $x - y \notin \widetilde{U}(\widetilde{\mu} : [t_1, t_2])$ which is a Thus get $\tilde{\mu}(x-y) \ge$ contradiction. we $min^{i}\{\tilde{\mu}(x), \tilde{\mu}(y)\}$. If there exist $x, y, z \in M$ and $\alpha, \beta \in \Gamma$ such that $\tilde{\mu}(x\alpha y\beta z) < [t_1, t_2] <$ $min^i\{\tilde{\mu}(x), \, \tilde{\mu}(y)\}$. Then $\tilde{\mu}(x) > [t_1, t_2], \, \tilde{\mu}(z) >$ $[t_1, t_2]$ and $\tilde{\mu}(x\alpha y\beta z) < [t_1t_2]$ so $x, y \in \tilde{U}(\tilde{\mu})$: $[t_1t_2]$) but $x\alpha y\beta z \notin \widetilde{U}(\widetilde{\mu}:[t_1t_2])$ which is a contradiction. If there exists $x, y \in M$, $\alpha \in \Gamma$ such that $\tilde{\mu}(x\alpha y) > max^i \{ \tilde{\mu}(x), \ \tilde{\mu}(y) \}$. Choose $[t_1, t_2]$ such that $\tilde{\mu}(x\alpha y) > [t_1, t_2] > m\alpha x^i {\{\tilde{\mu}(x), \tilde{\mu}(y)\}}$. Then $\tilde{\mu}(x) < [t_1, t_2]$, $\tilde{\mu}(y) < [t_1, t_2]$ and $\tilde{\mu}(x\alpha y) >$ $[t_1, t_2]$. Then $x\alpha y \in \widetilde{U}(\widetilde{\mu} : [t_1, t_2])$ but $x, y \notin$ $\widetilde{U}(\widetilde{\mu}:[t_1,t_2])$ which is a contradiction. $\tilde{\mu}(x\gamma y) \leq max^{i}\{\tilde{\mu}(x), \tilde{\mu}(y)\}$. Therefore $\tilde{\mu}$ is an i.v. c-prime fuzzy bi-ideal of M.

Theorem 3.4

Let $\tilde{\mu} = [\mu^-, \mu^+]$ be an i.v fuzzy subset of M. Then $\tilde{\mu}$ is an i.v c-prime fuzzy bi-ideal of M if and only if μ^-, μ^+ are c-prime fuzzy bi-ideals of M.

Proof: Assume that $\tilde{\mu}$ is ani.vc-prime fuzzy bi-ideal of M. For any $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. Now,

 $[\mu^{-}(x-y), \mu^{+}(x-y)] = \tilde{\mu}(x-y) \ge$ $min^{i}\{\tilde{\mu}(x), \tilde{\mu}(y)\} =$ $min^{i}\{[\mu^{-}(x), \mu^{+}(x)], \{\mu^{-}(y), \mu^{+}(y)]\} =$ $min^{i}\{[\mu^{-}(x),\mu^{-}(y)],min^{i}[\mu^{+}(x),\mu^{+}(y)]\}.$ It follows that $\mu^-(x-y) \ge \min\{\mu^-(x), \mu^-(y)\}$ and $\mu^+(x-y) \ge$ $\min\{\mu^+(x), \mu^+(y)\}. \left[\mu^-(x\alpha y\beta z), \mu^+(x\alpha y\beta z)\right] =$ $\tilde{\mu}(x\alpha y\beta z) \geq min^{i}\{\tilde{\mu}(x), \tilde{\mu}(z)\} =$ $min^{i}\{[\mu^{-}(x), \mu^{+}(x)], [\mu^{-}(z), \mu^{+}(z)]\} =$ $min^{i}\{[\mu^{-}(x),\mu^{-}(z)],min^{i}[\mu^{+}(x),\mu^{+}(z)]\}.$ It follows that $\mu^-(x\alpha y\beta z) \ge \min\{\mu^-(x), \mu^-(z)\}$ and $\mu^+(x\alpha y\beta z) \ge \min \{\mu^+(x), \mu^+(z)\}.$ For any $x, y \in$ *M* and $\gamma \in \Gamma$. Now, $[\mu^-(x\gamma y), \mu^+(x\gamma y)] =$ $\tilde{\mu}(x\gamma y) \leq \, \max^i \{ \tilde{\mu}(x), \tilde{\mu}(y) \} =$ $max^{i}\{[\mu^{-}(x), \mu^{+}(x)], [\mu^{-}(y), \mu^{+}(y)]\} =$ $max^{i}\{[\mu^{-}(x), \mu^{-}(y)], [\mu^{+}(x), \mu^{+}(y)]\}$. It follows that $\mu^-(x\gamma y) \le \max\{\mu^-(x), \mu^-(y)\}$ and $\mu^+(x\gamma y) \le$ $\max\{\mu^+(x), \mu^+(y)\}$. Conversely assume that μ^-, μ^+ are c-prime fuzzy bi-ideals of M. Let $x, y, z \in M$, $\alpha, \beta \in \Gamma$. Then $\tilde{\mu}(x-y) = [\mu^-(x-y), \mu^+(x-y)]$ $|y| \ge \min\{[\mu^-(x), \mu^-(y)], \min[\mu^+(x), \mu^+(y)]\} =$ $min^{i}\{[\mu^{-}(x), \mu^{+}(x)], min[\mu^{-}(y), \mu^{+}(y)]\} =$ $min^{i}\{\tilde{\mu}(x), \, \tilde{\mu}(y)\}$. Then we get $\tilde{\mu}(x\alpha y\beta z) =$ $[\mu^{-}(x\alpha y\beta z), \mu^{+}(x\alpha y\beta z) \ge \min\{[\mu^{-}(x), \mu^{-}(z)],$ $min[\mu^{+}(x), \mu^{+}(z)] = min^{i}\{[\mu^{-}(x), \mu^{+}(x)], [\mu^{-}(z), \mu^{-}(z)]\}$ $\mu^{+}(z)]\} = \min^{i} \{ \tilde{\mu}(x), \ \tilde{\mu}(z) \}.$ Then get $\tilde{\mu}(x\alpha y) = [\mu^{-}(x\alpha y), \mu^{+}(x\alpha y)] \leq$

 $\max\{\mu^{-}(x), \mu^{-}(y)\}, \max\{\mu^{+}(x), \mu^{+}(y)\} = \\ \max^{i}\{[\mu^{-}(x), \mu^{+}(x)], [\mu^{-}(y), \mu^{+}(y)]\} = \\ \max^{i}\{\tilde{\mu}(x), \tilde{\mu}(z)\}. \quad \text{Therefore } \tilde{\mu} \text{ is an i.v c-prime} \\ \text{fuzzy bi-ideal of } M.$

Theorem 3.5

Let I be a c-prime fuzzy bi-ideal of M. Then for any $[t_1, t_2] \in D[0,1]$ with $[t_1, t_2] \neq [0,0]$ there exists an i.v c-prime fuzzy bi-ideal $\tilde{\mu}$ of M such that $\widetilde{U}(\tilde{\mu}:[t_1, t_2]) = I$.

Proof: Let I be a c-prime fuzzy bi-ideal of M. Let $\tilde{\mu}$ be an i.v fuzzy subset of M defined by $\tilde{\mu}(x) =$ $\{[t_1, t_2] \ if \ x \in I \ \text{Then } \widetilde{U}(\widetilde{\mu}: [t_1, t_2]) = I. \text{ Assume} \}$ (Õ otherwise that $\tilde{\mu}(x-y) < min^i \{ \tilde{\mu}(x), \, \tilde{\mu}(y) \}$. This implies $\tilde{\mu}(x-y) = 0$ and $min^i\{\tilde{\mu}(x), \tilde{\mu}(y)\} = [t_1, t_2]$ so $x, y \in I$ and $\alpha, \beta \in \Gamma$ but $x - y \notin I$ which is a $\tilde{\mu}(x-y) \geq min^i \{ \tilde{\mu}(x),$ Thus contradiction. $\tilde{\mu}(y)$ }. Suppose that $\tilde{\mu}(x\alpha y\beta z) < min^{i}\{\tilde{\mu}(x),$ $\tilde{\mu}(z)$. Then $\tilde{\mu}(x\alpha y\beta z) = \tilde{0}$, $min^i\{\tilde{\mu}(x), \tilde{\mu}(z)\} =$ $[t_1, t_2]$. So $x, z \in I$ but $x\alpha y\beta z \notin I$ which is a Hence $\tilde{\mu}(x\alpha y\beta z) \geq min^i\{\tilde{\mu}(x),$ contradiction. $\tilde{\mu}(z)$. Then $\tilde{\mu}(x\gamma y) > max^i \{ \tilde{\mu}(x), \ \tilde{\mu}(y) \}$. Then $\tilde{\mu}(x\gamma y) = [t_1, t_2], max^i {\{\tilde{\mu}(x), \tilde{\mu}(z)\}} = \tilde{0}$ $x\gamma y \in I$ but $x, y \notin I$ which is a contradiction. Hence $\tilde{\mu}(x\gamma y) \leq max^{i}\{\tilde{\mu}(x), \tilde{\mu}(y)\}.$

Theorem 3.6

Let H be a non-empty subset of M and $\tilde{\mu}$ be an i.v fuzzy subset of M defined by $\tilde{\mu}(x) = \begin{cases} \tilde{s} & \text{if } x \in H \\ \tilde{t} & \text{otherwise} \end{cases}$ for some $x \in M$, \tilde{s} , $\tilde{t} \in D[0,1]$ and $\tilde{s} > \tilde{t}$. Then H is a c-prime bi-ideal of M if and only if $\tilde{\mu}$ is an i.v c-prime fuzzy bi-ideal of M.

Proof: Assume that H is a c-prime bi-ideal of M. Let $x, y \in M$. We consider four cases.

- 1) $x \in H$ and $y \in H$.
- 2) $x \in H$ and $y \notin H$.
- 3) $x \notin H$ and $y \in H$.
- 4) $x \notin H$ and $y \notin H$.

Case (1): If $x \in H$ and $y \in H$. Then $\tilde{\mu}(x) = \tilde{s} = \tilde{\mu}(y)$. Since H is a c-prime bi-ideal of $M, x - y \in H$. Thus $\tilde{\mu}(x - y) = \tilde{s} = \min^i \{ \tilde{\mu}(x), \, \tilde{\mu}(y) \}$.

Case (2): If $x \in H$ and $y \notin H$. Then $\tilde{\mu}(x) = \tilde{s}$, $\tilde{\mu}(y) = \tilde{t}$ so $min^i\{\tilde{\mu}(x), \tilde{\mu}(y)\} = \tilde{t}$. Now $\tilde{\mu}(x-y) = \tilde{s}$ or \tilde{t} according as $x-y \in H$ or $x-y \notin H$. By assumption $\tilde{s} > \tilde{t}$. We have $\tilde{\mu}(x-y) \geq min^i\{\tilde{\mu}(x), \tilde{\mu}(y)\}$. Similarly we can prove case (3).

Case (4): If $x \notin H$ and $y \notin H$.

Then we have $\tilde{\mu}(x) = \tilde{t} = \tilde{\mu}(y)$. So $min^i\{\tilde{\mu}(x), \tilde{\mu}(y)\} = \tilde{t}$. Next, $\tilde{\mu}(x-y) = \tilde{s}$ or \tilde{t} according as $x-y \in H$ or $x-y \notin H$. So $\tilde{\mu}(x-y) \geq min^i\{\tilde{\mu}(x), \tilde{\mu}(y)\}$. Now let $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. Then we have the following eight cases:

- (1) $x \in H$, $y \in H$ and $z \in H$.
- (2) $x \notin H, y \in H \text{ and } z \in H$.
- (3) $x \in H, y \notin H \text{ and } z \in H.$
- $(4) \ x \in H, y \in H \ and \ z \not\in \ H.$
- $(5) \ x \not\in H, y \not\in \ H \ and \ z \in H$
- (6) $x \in H, y \notin H \text{ and } z \notin H.$
- $(7) \ x \notin H, y \in H \ and \ z \notin H.$
- (8) $x \notin H, y \notin H \text{ and } z \notin H$.

These cases can be proved by arguments similar to fuzzy cases above. Hence $\tilde{\mu}(x\alpha y\beta z) \ge$

 $min^i\{\tilde{\mu}(x), \tilde{\mu}(z)\}$. Now let $x, y \in M$, $\gamma \in \Gamma$. We consider four cases

- (1) $x \in H$ and $y \in H$.
- (2) $x \in H$ and $y \notin H$.
- (3) $x \notin H$ and $y \in H$.
- (4) $x \notin H$ and $y \notin H$.

Case (1): If $x \in H$ and $y \in H$. Then $\tilde{\mu}(x) = \tilde{s} = \tilde{\mu}(y)$. Since H is a c-prime bi-ideal of M, we get $x\gamma y \in H$. Thus $\tilde{\mu}(x\gamma y) = \tilde{s} = max^i\{\tilde{s}, \tilde{s}\} = max^i\{\tilde{\mu}(x), \tilde{\mu}(y)\}$.

Case(2): If $x \in H$ and $y \notin H$. Then $\tilde{\mu}(x) = \tilde{s}$ and $\tilde{\mu}(y) = \tilde{t}$. So $\max^i \{\tilde{\mu}(x), \tilde{\mu}(y)\} = \tilde{s}$. Now $\tilde{\mu}(x\gamma y) = \tilde{s}$ or \tilde{t} according as $x\gamma y \in H$ or $x\gamma y \notin H$. By assumption $\tilde{t} < \tilde{s}$ we have $\tilde{\mu}(x\gamma y) \leq \max^i \{\tilde{\mu}(x), \tilde{\mu}(y)\}$. Similarly we can prove case (3).

Case (4): If $x \notin H$ and $y \notin H$. We have $\tilde{\mu}(x) = \tilde{t} = \tilde{\mu}(y)$. So $\max^i \{\tilde{\mu}(x), \tilde{\mu}(y)\} = \tilde{t}$. Next, $\tilde{\mu}(x\gamma y) = \tilde{s}$ or \tilde{t} according as $x\gamma y \in H$ or $x\gamma y \notin H$. So $\tilde{\mu}(x\gamma y) \leq \max^i \{\tilde{\mu}(x), \tilde{\mu}(y)\}$. Conversely Assume that $\tilde{\mu}$ is an i.v c-prime fuzzy bi-ideal of M. Let $x, y, z \in M$, $\alpha, \beta \in \Gamma$ be such that $\tilde{\mu}(x) = \tilde{\mu}(y) = \tilde{\mu}(z) = \tilde{s}$. Since $\tilde{\mu}$ is an i.v c-prime fuzzy bi-ideal of M, we have $\tilde{\mu}(x-y) \geq \min^i \{\tilde{\mu}(x), \tilde{\mu}(y)\} = \tilde{s}$ and $\tilde{\mu}(x\alpha y\beta z) \geq \min^i \{\tilde{\mu}(x), \tilde{\mu}(z)\} = \tilde{s}$, $\tilde{\mu}(x\gamma y) \leq \max^i \{\tilde{\mu}(x), \tilde{\mu}(y)\} < \tilde{t}$. So x-y, $x\alpha y\beta z$, $x\gamma y \in H$. Hence H is a c-prime bi-ideal of M.

Theorem 3.7

Let $\tilde{\mu}$ be an i.v c-prime fuzzy bi-ideal of M. Then the set $M_{\tilde{\mu}} = \{x \in M | \tilde{\mu}(x) = \tilde{\mu}(0)\}$ is a c-prime bi-ideal of M. Proof: Let $\tilde{\mu}$ be an i.v c-prime fuzzy bi-ideal of M. Let $x,y\in M$. Then, $\tilde{\mu}(x)=\tilde{\mu}(0)$, $\tilde{\mu}(y)=\tilde{\mu}(0)$ and $\tilde{\mu}(x-y)\geq min^i\{\tilde{\mu}(x),\tilde{\mu}(y)\}=min^i\{\tilde{\mu}(0),$ $\tilde{\mu}(0)\}=\tilde{\mu}(0)$. So, $\tilde{\mu}(x-y)=\tilde{\mu}(0)$. Thus $x-y\in M_{\tilde{\mu}}$. Now for every $x,y,z\in M_{\tilde{\mu}}$ and $\alpha,\beta\in\Gamma$. We have $\tilde{\mu}(x\alpha y\beta z)\geq min^i\{\tilde{\mu}(x),\tilde{\mu}(z)\}=min^i\{\tilde{\mu}(0),\tilde{\mu}(0)\}=\tilde{\mu}(0)$. Thus $x\alpha y\beta z\in M_{\tilde{\mu}}$. Let $x,y\in M_{\tilde{\mu}}$, $\gamma\in\Gamma$. Then $\tilde{\mu}(x\alpha y)\leq max^i\{\tilde{\mu}(x),\tilde{\mu}(y)\}=max^i\{\tilde{\mu}(0),\tilde{\mu}(0)\}=\tilde{\mu}(0)$. Hence we get $x\alpha y\in M_{\tilde{\mu}}$.

Bibliography

[1] V. Chinnadurai, K. Arulmozhi, S. Kadalarasi, Characterization of fuzzy weak bi-ideals of Γ -nearrings, International Journal of Algebra and Statistics. 6 (1-2) (2017), 95- 104.

[2]V.Chinnadurai, K. Arulmozhi, S. Kadalarasi, Interval valued fuzzy bi-ideals of Γ -near-rings. Submitted.

[3] V. Chinnadurai, K. Arulmozhi, S. Kadalarasi, *Interval valued fuzzy weak bi-ideals of \Gamma-near-rings*, Jouranal of Linear and Topological Algebra Vol. 06, No.03, 2017, 223 -236.

[4] V. Chinnadurai, K. Arulmozhi, S. Kadalarasi, *Interval valued fuzzy ideals of gamma-near-rings*, Bulletin of the International Mathematical Virtual Institute, Vol. 8(2018), 301-314.

[5] T. Manikantan, Fuzzy bi-ideals of near-rings, Journal of Fuzzy Mathematics 17 (13) (2009) 659 - 671.

- [6] N. Meenakumari, T. TamizhChelvam, *C-Prime Fuzzy Bi-ideals in \Gamma-near-rings*, International Journal of Algebra and Statistics, Vol. 2:2 (2013), 10-14.
- [7] N. Meenakumari, T. TamizhChelvam, *Fuzzy biideals in gamma near-rings*, Journal of Algebra Discrete Structures. 9 (1-2) (2011) 43-52.
- [8] G. Pilz, *Near-rings, The theory and its applications*, North- Holland Publishing Company, Amsterdam, 1983.
- [9] Bh. Satnarayana, *Contributions to near-rings theory* Doctoral Thesis Nagarjuna University, 1984.
- [10] T. TamizhChelvam, N. Meenakumari, *Bi-ideals* of gamma near-rings, Southeast Bulletin of Mathematics 27 (2004) 983-998.
- [11] N. Thillaigovindan, V. Chinnadurai, *Interval valued fuzzy quasi-ideals of semigroups*, East Asian Mathematics Journal, 25 (4) (2009) 449-467.
- [12]N. Thillaigovindan, V. Chinnadurai, S. Kadalarasi, *Interval valued fuzzy ideals of near-rings*, The Journal of Fuzzy Mathematics 23(2)(2015)71-484.
- [13] N. Thillaigovindan, V. Chinnadurai, S. Coumaressane, *T-fuzzy subsemigroups and T-fuzzy ideals of regular Γ-semigroups*, Annals of Fuzzy Mathematics and Informatics, 11 (4) (2016) 669-680.
- [14] Y. K. Cho, T. TamizhChelvam, S. Jayalakshmi, Weal bi-ideals of near-rings, J. Korean. Soc. Math. Educ. Ser B. Pure Appl. Math. 14 (3) (2007), 153-159.
- [15] L. A. Zadeh, *Fuzzy sets*, Inform and Control. 8 (1965), 338-353.

[16] L. A. Zadeh, *The concept of a linguistic variable and its application to approximate reasoning*, Inform. Sci. 8 (1975), 199-249.